Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 34.762
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731829

Kidney ischemia and reperfusion injury (IRI) is a significant contributor to acute kidney injury (AKI), characterized by tubular injury and kidney dysfunction. Salvador family WW domain containing protein 1 (SAV1) is a key component of the Hippo pathway and plays a crucial role in the regulation of organ size and tissue regeneration. However, whether SAV1 plays a role in kidney IRI is not investigated. In this study, we investigated the role of SAV1 in kidney injury and regeneration following IRI. A proximal tubule-specific knockout of SAV1 in kidneys (SAV1ptKO) was generated, and wild-type and SAV1ptKO mice underwent kidney IRI or sham operation. Plasma creatinine and blood urea nitrogen were measured to assess kidney function. Histological studies, including periodic acid-Schiff staining and immunohistochemistry, were conducted to assess tubular injury, SAV1 expression, and cell proliferation. Western blot analysis was employed to assess the Hippo pathway-related and proliferation-related proteins. SAV1 exhibited faint expression in the proximal tubules and was predominantly expressed in the connecting tubule to the collecting duct. At 48 h after IRI, SAV1ptKO mice continued to exhibit severe kidney dysfunction, compared to attenuated kidney dysfunction in wild-type mice. Consistent with the functional data, severe tubular damage induced by kidney IRI in the cortex was significantly decreased in wild-type mice at 48 h after IRI but not in SAV1ptKO mice. Furthermore, 48 h after IRI, the number of Ki67-positive cells in the cortex was significantly higher in wild-type mice than SAV1ptKO mice. After IRI, activation and expression of Hippo pathway-related proteins were enhanced, with no significant differences observed between wild-type and SAV1ptKO mice. Notably, at 48 h after IRI, protein kinase B activation (AKT) was significantly enhanced in SAV1ptKO mice compared to wild-type mice. This study demonstrates that SAV1 deficiency in the kidney proximal tubule worsens the injury and delays kidney regeneration after IRI, potentially through the overactivation of AKT.


Acute Kidney Injury , Cell Cycle Proteins , Kidney Tubules, Proximal , Mice, Knockout , Reperfusion Injury , Animals , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Male , Cell Proliferation , Signal Transduction , Hippo Signaling Pathway , Mice, Inbred C57BL , Disease Models, Animal
2.
BMC Pulm Med ; 24(1): 237, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745191

BACKGROUND: Diabetes mellitus (DM) can aggravate lung ischemia-reperfusion (I/R) injury and is a significant risk factor for recipient mortality after lung transplantation. Metformin protects against I/R injury in a variety of organs. However, the effect of metformin on diabetic lung I/R injury remains unclear. Therefore, this study aimed to observe the effect and mechanism of metformin on lung I/R injury following lung transplantation in type 2 diabetic rats. METHODS: Sprague-Dawley rats were randomly divided into the following six groups: the control + sham group (CS group), the control + I/R group (CIR group), the DM + sham group (DS group), the DM + I/R group (DIR group), the DM + I/R + metformin group (DIRM group) and the DM + I/R + metformin + Compound C group (DIRMC group). Control and diabetic rats underwent the sham operation or left lung transplantation operation. Lung function, alveolar capillary permeability, inflammatory response, oxidative stress, necroptosis and the p-AMPK/AMPK ratio were determined after 24 h of reperfusion. RESULTS: Compared with the CIR group, the DIR group exhibited decreased lung function, increased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, but decreased the p-AMPK/AMPK ratio. Metformin improved the function of lung grafts, decreased alveolar capillary permeability, inflammatory responses, oxidative stress and necroptosis, and increased the p-AMPK/AMPK ratio. In contrast, the protective effects of metformin were abrogated by Compound C. CONCLUSIONS: Metformin attenuates lung I/R injury and necroptosis through AMPK pathway in type 2 diabetic lung transplant recipient rats.


AMP-Activated Protein Kinases , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lung Transplantation , Metformin , Necroptosis , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Metformin/pharmacology , Reperfusion Injury/prevention & control , Rats , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Necroptosis/drug effects , Male , AMP-Activated Protein Kinases/metabolism , Diabetes Mellitus, Experimental/complications , Oxidative Stress/drug effects , Lung/pathology , Lung/drug effects , Lung/metabolism , Signal Transduction/drug effects , Hypoglycemic Agents/pharmacology , Lung Injury/prevention & control , Lung Injury/etiology , Lung Injury/metabolism
3.
Mol Med ; 30(1): 59, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745316

Microglial activation and polarization play a central role in poststroke inflammation and neuronal damage. Modulating microglial polarization from pro-inflammatory to anti-inflammatory phenotype is a promising therapeutic strategy for the treatment of cerebral ischemia. Polyphyllin I (PPI), a steroidal saponin, shows multiple bioactivities in various diseases, but the potential function of PPI in cerebral ischemia is not elucidated yet. In our study, the influence of PPI on cerebral ischemia-reperfusion injury was evaluated. Mouse middle cerebral artery occlusion (MCAO) model and oxygen-glucose deprivation and reoxygenation (OGD/R) model were constructed to mimic cerebral ischemia-reperfusion injury in vivo and in vitro. TTC staining, TUNEL staining, RT-qPCR, ELISA, flow cytometry, western blot, immunofluorescence, hanging wire test, rotarod test and foot-fault test, open-field test and Morris water maze test were performed in our study. We found that PPI alleviated cerebral ischemia-reperfusion injury and neuroinflammation, and improved functional recovery of mice after MCAO. PPI modulated microglial polarization towards anti-inflammatory M2 phenotype in MCAO mice in vivo and post OGD/R in vitro. Besides, PPI promoted autophagy via suppressing Akt/mTOR signaling in microglia, while inhibition of autophagy abrogated the effect of PPI on M2 microglial polarization after OGD/R. Furthermore, PPI facilitated autophagy-mediated ROS clearance to inhibit NLRP3 inflammasome activation in microglia, and NLRP3 inflammasome reactivation by nigericin abolished the effect of PPI on M2 microglia polarization. In conclusion, PPI alleviated post-stroke neuroinflammation and tissue damage via increasing autophagy-mediated M2 microglial polarization. Our data suggested that PPI had potential for ischemic stroke treatment.


Autophagy , Disease Models, Animal , Microglia , Neuroinflammatory Diseases , Reperfusion Injury , Animals , Microglia/drug effects , Microglia/metabolism , Mice , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/etiology , Autophagy/drug effects , Male , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Diosgenin/analogs & derivatives , Diosgenin/pharmacology , Diosgenin/therapeutic use , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Signal Transduction/drug effects , Infarction, Middle Cerebral Artery/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice, Inbred C57BL , Cell Polarity/drug effects
5.
Int J Colorectal Dis ; 39(1): 65, 2024 May 03.
Article En | MEDLINE | ID: mdl-38700747

PURPOSE: Remote ischemic preconditioning (RIPC) reportedly reduces ischemia‒reperfusion injury (IRI) in various organ systems. In addition to tension and technical factors, ischemia is a common cause of anastomotic leakage (AL) after rectal resection. The aim of this pilot study was to investigate the potentially protective effect of RIPC on anastomotic healing and to determine the effect size to facilitate the development of a subsequent confirmatory trial. MATERIALS AND METHODS: Fifty-four patients with rectal cancer (RC) who underwent anterior resection were enrolled in this prospectively registered (DRKS0001894) pilot randomized controlled triple-blinded monocenter trial at the Department of Surgery, University Medicine Mannheim, Mannheim, Germany, between 10/12/2019 and 19/06/2022. The primary endpoint was AL within 30 days after surgery. The secondary endpoints were perioperative morbidity and mortality, reintervention, hospital stay, readmission and biomarkers of ischemia‒reperfusion injury (vascular endothelial growth factor, VEGF) and cell death (high mobility group box 1 protein, HMGB1). RIPC was induced through three 10-min cycles of alternating ischemia and reperfusion to the upper extremity. RESULTS: Of the 207 patients assessed, 153 were excluded, leaving 54 patients to be randomized to the RIPC or the sham-RIPC arm (27 each per arm). The mean age was 61 years, and the majority of patients were male (37:17 (68.5:31.5%)). Most of the patients underwent surgery after neoadjuvant therapy (29/54 (53.7%)) for adenocarcinoma (52/54 (96.3%)). The primary endpoint, AL, occurred almost equally frequently in both arms (RIPC arm: 4/25 (16%), sham arm: 4/26 (15.4%), p = 1.000). The secondary outcomes were comparable except for a greater rate of reintervention in the sham arm (9 (6-12) vs. 3 (1-5), p = 0.034). The median duration of endoscopic vacuum therapy was shorter in the RIPC arm (10.5 (10-11) vs. 38 (24-39) days, p = 0.083), although the difference was not statistically significant. CONCLUSION: A clinically relevant protective effect of RIPC on anastomotic healing after rectal resection cannot be assumed on the basis of these data.


Anastomotic Leak , Ischemic Preconditioning , Rectal Neoplasms , Humans , Rectal Neoplasms/surgery , Male , Pilot Projects , Female , Anastomotic Leak/etiology , Anastomotic Leak/prevention & control , Middle Aged , Ischemic Preconditioning/methods , Aged , Reperfusion Injury/prevention & control , Reperfusion Injury/etiology , Treatment Outcome
6.
Brain Behav ; 14(5): e3504, 2024 May.
Article En | MEDLINE | ID: mdl-38698583

BACKGROUND: Electroacupuncture (EA) has been shown to facilitate brain plasticity-related functional recovery following ischemic stroke. The functional magnetic resonance imaging technique can be used to determine the range and mode of brain activation. After stroke, EA has been shown to alter brain connectivity, whereas EA's effect on brain network topology properties remains unclear. An evaluation of EA's effects on global and nodal topological properties in rats with ischemia reperfusion was conducted in this study. METHODS AND RESULTS: There were three groups of adult male Sprague-Dawley rats: sham-operated group (sham group), middle cerebral artery occlusion/reperfusion (MCAO/R) group, and MCAO/R plus EA (MCAO/R + EA) group. The differences in global and nodal topological properties, including shortest path length, global efficiency, local efficiency, small-worldness index, betweenness centrality (BC), and degree centrality (DC) were estimated. Graphical network analyses revealed that, as compared with the sham group, the MCAO/R group demonstrated a decrease in BC value in the right ventral hippocampus and increased BC in the right substantia nigra, accompanied by increased DC in the left nucleus accumbens shell (AcbSh). The BC was increased in the right hippocampus ventral and decreased in the right substantia nigra after EA intervention, and MCAO/R + EA resulted in a decreased DC in left AcbSh compared to MCAO/R. CONCLUSION: The results of this study provide a potential basis for EA to promote cognitive and motor function recovery after ischemic stroke.


Electroacupuncture , Infarction, Middle Cerebral Artery , Magnetic Resonance Imaging , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Electroacupuncture/methods , Male , Rats , Reperfusion Injury/physiopathology , Reperfusion Injury/therapy , Reperfusion Injury/diagnostic imaging , Infarction, Middle Cerebral Artery/therapy , Infarction, Middle Cerebral Artery/physiopathology , Infarction, Middle Cerebral Artery/diagnostic imaging , Brain/physiopathology , Brain/diagnostic imaging , Brain Ischemia/therapy , Brain Ischemia/physiopathology , Brain Ischemia/diagnostic imaging , Disease Models, Animal , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Ischemic Stroke/therapy , Ischemic Stroke/physiopathology , Ischemic Stroke/diagnostic imaging , Hippocampus/diagnostic imaging , Hippocampus/physiopathology
7.
J Gene Med ; 26(5): e3692, 2024 May.
Article En | MEDLINE | ID: mdl-38745073

BACKGROUND: Sevoflurane (Sevo) preconditioning and postconditioning play a protective role against injury induced by hepatic ischemia/reperfusion (I/R). At the same time, the involvement of macrophage infiltration in this process and the precise mechanisms are unclear. Here, we designed this research to elucidate the protective effects of Sevo against hepatic I/R injury and the molecules involved. METHODS: The alleviating effect of Sevo on the liver injury was analyzed by liver function analysis, hematoxylin and eosin staining, Masson trichrome staining, terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling, western blot analysis and an enzyme-linked immunosorbent assay. An in vitro cell model was developed using alpha mouse liver 12 (AML12) cells, and the cell model was treated with oxygen-glucose deprivation and reoxygenation and Sevo. Multiple bioinformatics databases were used to screen transcriptional regulators related to hepatic I/R injury and the targets of Krueppel-like factor 5 (KLF5). KLF5 expression was artificially upregulated alone or with integrin beta-2 (ITGB2) knockdown to substantiate their involvement in Sevo-mediated hepatoprotection. RESULTS: Sevo protected the liver against I/R injury by reducing cell apoptosis and inflammatory response. KLF5 was upregulated in liver tissues following I/R injury, whereas KLF5 overexpression aggravated macrophage infiltration and liver injury induced by I/R injury. KLF5 bound to the promoter of ITGB2 to enhance ITGB2 transcription. Knockdown of ITGB2 reversed the aggravation of injury caused by KLF5 overexpression in mice and AML12 cells. CONCLUSIONS: Sevo blocked KLF5-mediated transcriptional activation of ITGB2, thereby inhibiting macrophage infiltration in hepatic I/R injury.


Kruppel-Like Transcription Factors , Liver , Macrophages , Reperfusion Injury , Sevoflurane , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Mice , Macrophages/metabolism , Sevoflurane/pharmacology , Liver/metabolism , Liver/pathology , Transcriptional Activation , Male , Disease Models, Animal , Apoptosis , CD18 Antigens/metabolism , CD18 Antigens/genetics , Cell Line , Mice, Inbred C57BL , Gene Expression Regulation
8.
Drug Des Devel Ther ; 18: 1499-1514, 2024.
Article En | MEDLINE | ID: mdl-38716368

Background: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms. Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms. Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2. Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.


Drugs, Chinese Herbal , Ferroptosis , MAP Kinase Signaling System , Rats, Sprague-Dawley , Reperfusion Injury , Ferroptosis/drug effects , Animals , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Male , MAP Kinase Signaling System/drug effects , Drugs, Chinese Herbal/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Disease Models, Animal , Neuroprotective Agents/pharmacology
9.
Mol Biol Rep ; 51(1): 643, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727775

BACKGROUND: Baicalein is the main active flavonoid in Scutellariae Radix and is included in shosaikoto, a Kampo formula used for treating hepatitis and jaundice. However, little is known about its hepatoprotective effects against hepatic ischemia-reperfusion injury (HIRI), a severe clinical condition directly caused by interventional procedures. We aimed to investigate the hepatoprotective effects of baicalein against HIRI and partial hepatectomy (HIRI + PH) and its potential underlying mechanisms. METHODS AND RESULTS: Male Sprague-Dawley rats received either baicalein (5 mg/kg) or saline intraperitoneally and underwent a 70% hepatectomy 15 min after hepatic ischemia. After reperfusion, liver and blood samples were collected. Survival was monitored 30 min after hepatic ischemia and hepatectomy. In interleukin 1ß (IL-1ß)-treated primary cultured rat hepatocytes, the influence of baicalein on inflammatory mediator production and the associated signaling pathway was analyzed. Baicalein suppressed apoptosis and neutrophil infiltration, which are the features of HIRI + PH treatment-induced histological injury. Baicalein also reduced the mRNA expression of the proinflammatory cytokine tumor necrosis factor-α (TNF-α). In addition, HIRI + PH treatment induced liver enzyme deviations in the serum and hypertrophy of the remnant liver, which were suppressed by baicalein. In the lethal HIRI + PH treatment group, baicalein significantly reduced mortality. In IL-1ß-treated rat hepatocytes, baicalein suppressed TNF-α and chemokine mRNA expression as well as the activation of nuclear factor-kappa B (NF-κB) and Akt. CONCLUSIONS: Baicalein treatment attenuates HIRI + PH-induced liver injury and may promote survival. This potential hepatoprotection may be partly related to suppressing inflammatory gene induction through the inhibition of NF-κB activity and Akt signaling in hepatocytes.


Apoptosis , Disease Models, Animal , Flavanones , Hepatectomy , Hepatocytes , Interleukin-1beta , Liver , Rats, Sprague-Dawley , Reperfusion Injury , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Hepatectomy/methods , Male , Rats , Liver/drug effects , Liver/metabolism , Liver/pathology , Hepatocytes/drug effects , Hepatocytes/metabolism , Apoptosis/drug effects , Interleukin-1beta/metabolism , NF-kappa B/metabolism , Protective Agents/pharmacology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism
10.
Sci Rep ; 14(1): 10251, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704512

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Fibrosis , Indoleamine-Pyrrole 2,3,-Dioxygenase , Interferon-gamma , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Animals , Interferon-gamma/metabolism , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/metabolism , Rats , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mesenchymal Stem Cell Transplantation/methods , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/immunology , Kidney Diseases/therapy , Kidney Diseases/pathology , Rats, Sprague-Dawley
11.
Cell Death Dis ; 15(5): 316, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710691

S100 calcium-binding protein 16 (S100A16) is implicated in both chronic kidney disease (CKD) and acute kidney injury (AKI). Previous research has shown that S100A16 contributes to AKI by facilitating the ubiquitylation and degradation of glycogen synthase kinase 3ß (GSK3ß) and casein kinase 1α (CK1α) through the activation of HMG-CoA reductase degradation protein 1 (HRD1). However, the mechanisms governing S100A16-induced HRD1 activation and the upregulation of S100A16 expression in renal injury are not fully understood. In this study, we observed elevated expression of Hypoxia-inducible Factor 1-alpha (HIF-1α) in the kidneys of mice subjected to ischemia-reperfusion injury (IRI). S100A16 deletion attenuated the increased HIF-1α expression induced by IRI. Using a S100A16 knockout rat renal tubular epithelial cell line (NRK-52E cells), we found that S100A16 knockout effectively mitigated apoptosis during hypoxic reoxygenation (H/R) and cell injury induced by TGF-ß1. Our results revealed that H/R injuries increased both protein and mRNA levels of HIF-1α and HRD1 in renal tubular cells. S100A16 knockout reversed the expressions of HIF-1α and HRD1 under H/R conditions. Conversely, S100A16 overexpression in NRK-52E cells elevated HIF-1α and HRD1 levels. HIF-1α overexpression increased HRD1 and ß-catenin while decreasing GSK-3ß. HIF-1α inhibition restored HRD1 and ß-catenin upregulation and GSK-3ß downregulation by cellular H/R injury. Notably, Chromatin immunoprecipitation (ChIP) and luciferase reporter assays demonstrated HIF-1α binding signals on the HRD1 promoter, and luciferase reporter gene assays confirmed HIF-1α's transcriptional regulation of HRD1. Additionally, we identified Transcription Factor AP-2 Beta (TFAP2B) as the upregulator of S100A16. ChIP and luciferase reporter assays confirmed TFAP2B as a transcription factor for S100A16. In summary, this study identifies TFAP2B as the transcription factor for S100A16 and demonstrates HIF-1α regulation of HRD1 transcription within the S100A16-HRD1-GSK3ß/CK1α pathway during renal hypoxia injury. These findings provide crucial insights into the molecular mechanisms of kidney injury, offering potential avenues for therapeutic intervention.


Glycogen Synthase Kinase 3 beta , Hypoxia-Inducible Factor 1, alpha Subunit , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Rats , S100 Proteins/metabolism , S100 Proteins/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Signal Transduction , Male , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Mice, Inbred C57BL , Kidney/metabolism , Kidney/pathology , Apoptosis , Cell Line , Cell Hypoxia , Mice, Knockout
12.
Front Immunol ; 15: 1370647, 2024.
Article En | MEDLINE | ID: mdl-38694511

Background: Hepatic Ischemia-Reperfusion Injury (HIRI) is a major complication in liver transplants and surgeries, significantly affecting postoperative outcomes. The role of mitophagy, essential for removing dysfunctional mitochondria and maintaining cellular balance, remains unclear in HIRI. Methods: To unravel the role of mitophagy-related genes (MRGs) in HIRI, we assembled a comprehensive dataset comprising 44 HIRI samples alongside 44 normal control samples from the Gene Expression Omnibus (GEO) database for this analysis. Using Random Forests and Support Vector Machines - Recursive Feature Elimination (SVM-RFE), we pinpointed eight pivotal genes and developed a logistic regression model based on these findings. Further, we employed consensus cluster analysis for classifying HIRI patients according to their MRG expression profiles and conducted weighted gene co-expression network analysis (WGCNA) to identify clusters of genes that exhibit high correlation within different modules. Additionally, we conducted single-cell RNA sequencing data analysis to explore insights into the behavior of MRGs within the HIRI. Results: We identified eight key genes (FUNDC1, VDAC1, MFN2, PINK1, CSNK2A2, ULK1, UBC, MAP1LC3B) with distinct expressions between HIRI and controls, confirmed by PCR validation. Our diagnostic model, based on these genes, accurately predicted HIRI outcomes. Analysis revealed a strong positive correlation of these genes with monocytic lineage and a negative correlation with B and T cells. HIRI patients were divided into three subclusters based on MRG profiles, with WGCNA uncovering highly correlated gene modules. Single-cell analysis identified two types of endothelial cells with different MRG scores, indicating their varied roles in HIRI. Conclusions: Our study highlights the critical role of MRGs in HIRI and the heterogeneity of endothelial cells. We identified the macrophage migration inhibitory factor (MIF) and cGAS-STING (GAS) pathways as regulators of mitophagy's impact on HIRI. These findings advance our understanding of mitophagy in HIRI and set the stage for future research and therapeutic developments.


Endothelial Cells , Liver , Mitophagy , Reperfusion Injury , Humans , Mitophagy/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Endothelial Cells/metabolism , Liver/metabolism , Liver/pathology , Gene Expression Profiling , Male , Gene Regulatory Networks , Transcriptome , Female
13.
Front Immunol ; 15: 1372441, 2024.
Article En | MEDLINE | ID: mdl-38690269

Background and aims: Cuproptosis has emerged as a significant contributor in the progression of various diseases. This study aimed to assess the potential impact of cuproptosis-related genes (CRGs) on the development of hepatic ischemia and reperfusion injury (HIRI). Methods: The datasets related to HIRI were sourced from the Gene Expression Omnibus database. The comparative analysis of differential gene expression involving CRGs was performed between HIRI and normal liver samples. Correlation analysis, function enrichment analyses, and protein-protein interactions were employed to understand the interactions and roles of these genes. Machine learning techniques were used to identify hub genes. Additionally, differences in immune cell infiltration between HIRI patients and controls were analyzed. Quantitative real-time PCR and western blotting were used to verify the expression of the hub genes. Results: Seventy-five HIRI and 80 control samples from three databases were included in the bioinformatics analysis. Three hub CRGs (NLRP3, ATP7B and NFE2L2) were identified using three machine learning models. Diagnostic accuracy was assessed using a receiver operating characteristic (ROC) curve for the hub genes, which yielded an area under the ROC curve (AUC) of 0.832. Remarkably, in the validation datasets GSE15480 and GSE228782, the three hub genes had AUC reached 0.904. Additional analyses, including nomograms, decision curves, and calibration curves, supported their predictive power for diagnosis. Enrichment analyses indicated the involvement of these genes in multiple pathways associated with HIRI progression. Comparative assessments using CIBERSORT and gene set enrichment analysis suggested elevated expression of these hub genes in activated dendritic cells, neutrophils, activated CD4 memory T cells, and activated mast cells in HIRI samples versus controls. A ceRNA network underscored a complex regulatory interplay among genes. The genes mRNA and protein levels were also verified in HIRI-affected mouse liver tissues. Conclusion: Our findings have provided a comprehensive understanding of the association between cuproptosis and HIRI, establishing a promising diagnostic pattern and identifying latent therapeutic targets for HIRI treatment. Additionally, our study offers novel insights to delve deeper into the underlying mechanisms of HIRI.


Computational Biology , Machine Learning , Reperfusion Injury , Humans , Computational Biology/methods , Reperfusion Injury/genetics , Reperfusion Injury/immunology , Reperfusion Injury/diagnosis , Gene Expression Profiling , Liver/metabolism , Liver/immunology , Liver/pathology , Animals , Protein Interaction Maps , Mice , Gene Regulatory Networks , Databases, Genetic , Transcriptome , Male , Biomarkers
14.
Sci Rep ; 14(1): 10783, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734725

Necrotising enterocolitis (NEC) has a complex pathophysiology but the common end-point is ischaemia reperfusion injury (IRI) and intestinal necrosis. We have previously reported that RIC significantly reduces the intestinal injury in a rat model of NEC. Here we describe the changes in intestinal mRNA occurring in the intestine of animals exposed to IRI, both with and without RIC. Related rat-pups were randomly assigned to four groups: SHAM, IRI only, RIC only and RIC + IRI. IRI animals, underwent 40 min of intestinal ischaemia, and 90 min of reperfusion. Animals that underwent RIC had three cycles of 5 min of alternating ischaemia/reperfusion by means of a ligature applied to the hind limb. Samples from the terminal ileum were immediately stored in RNA-preserving media for later next generation sequencing and transciptome analysis using R v 3.6.1. Differential expression testing showed that 868 genes differentially expressed in animals exposed to RIC alone compared to SHAM and 135 in the IRI and RIC group compared to IRI alone. Comparison between these two sets showed that 25 genes were differentially expressed in both groups. Pro-inflammatory molecules: NF-ĸß2, Cxcl1, SOD2 and Map3k8 all show reduced expression in response to RIC. Targeted gene analysis revealed increased expression in PI3K which is part of the so-called RISK-pathway which is a key part of the protective mechanisms of RIC in the heart. Overall, this transcriptomic analysis shows that RIC provides a protective effect to the intestine via anti-inflammatory pathways. This could be particularly relevant to treating and preventing NEC.


Disease Models, Animal , Enterocolitis, Necrotizing , Gene Expression Profiling , Reperfusion Injury , Animals , Enterocolitis, Necrotizing/genetics , Enterocolitis, Necrotizing/pathology , Enterocolitis, Necrotizing/metabolism , Rats , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Ischemic Preconditioning/methods , Transcriptome
15.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732257

In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-ß by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1ß levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1ß suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.


Kidney Transplantation , Kidney , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Perfusion , Reperfusion Injury , Animals , Swine , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Kidney/metabolism , Mesenchymal Stem Cell Transplantation/methods , Perfusion/methods , Humans , Kidney Transplantation/methods , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Organ Preservation/methods , Translational Research, Biomedical , Male , Hypothermia, Induced/methods
16.
Rev Int Androl ; 22(1): 1-7, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735871

It was aimed to evaluate whether gallic acid (GA) have a beneficial effect in the testicular ischemia/reperfusion injury (IRI) model in rats for the first time. Testicular malondialdehyde, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase, catalase, high mobility group box 1 protein, nuclear factor kappa B, tumor necrosis factoralpha, interleukin-6, myeloperoxidase, 78-kDa glucose-regulated protein, activating transcription factor 6, CCAAT-enhancer-binding protein homologous protein and caspase-3 levels were determined using colorimetric methods. The oxidative stress, inflammation, endoplasmic reticulum stress and apoptosis levels increased statistically significantly in the IRI group compared with the sham operated group (p < 0.05). GA application improved these damage significantly (p < 0.05). Moreover, it was found that the results of histological examinations supported the biochemical results to a statistically significant extent. Our findings suggested that GA may be evaluated as a protective agent against testicular IRI.


Endoplasmic Reticulum Stress , Gallic Acid , HMGB1 Protein , NF-kappa B , Oxidative Stress , Reperfusion Injury , Spermatic Cord Torsion , Testis , Male , Animals , Gallic Acid/pharmacology , Gallic Acid/administration & dosage , Rats , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , Reperfusion Injury/drug therapy , NF-kappa B/metabolism , HMGB1 Protein/metabolism , Oxidative Stress/drug effects , Endoplasmic Reticulum Stress/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , Apoptosis/drug effects , Rats, Sprague-Dawley
17.
Rev Int Androl ; 22(1): 29-37, 2024 Mar.
Article En | MEDLINE | ID: mdl-38735875

A significant clinical condition known as testicular torsion leads to permanent ischemic damage to the testicular tissue and consequent loss of function in the testicles. In this study, it was aimed to evaluate the protective effects of Astaxanthin (ASTX) on testicular damage in rats with testicular torsion/detorsion in the light of biochemical and histopathological data. Spraque Dawley rats of 21 were randomly divided into three groups; sham, testicular torsion/detorsion (TTD) and astaxanthin + testicular torsion/detorsion (ASTX + TTD). TTD and ASTX + TTD groups underwent testicular torsion for 2 hours and then detorsion for 4 hours. Rats in the ASTX + TTD group were given 1 mg/kg/day astaxanthin by oral gavage for 7 days before torsion. Following the detorsion process, oxidative stress parameters and histopathological changes in testicular tissue were evaluated. Malondialdehyde (MDA) and total oxidant status (TOS) levels were significantly decreased in the ASTX group compared to the TTD group, while superoxide dismutase (SOD), glutathione (GSH) and total antioxidant status (TAS) levels were increased (p < 0.05). Moreover, histopathological changes were significantly reduced in the group given ASTX (p < 0.0001). It was determined that ASTX administration increased Beclin-1 immunoreactivity in ischemic testicular tissue, while decreasing caspase-3 immunoreactivity (p < 0.0001). Our study is the first to investigate the antiautophagic and antiapoptotic properties of astaxanthin after testicular torsion/detorsion based on the close relationship of Beclin-1 and caspase-3 in ischemic tissues. Our results clearly demonstrate the protective effects of ASTX against ischemic damage in testicular tissue. In ischemic testicular tissue, ASTX contributes to the survival of cells by inducing autophagy and inhibiting the apoptosis.


Antioxidants , Autophagy , Oxidative Stress , Rats, Sprague-Dawley , Spermatic Cord Torsion , Testis , Xanthophylls , Male , Animals , Xanthophylls/pharmacology , Xanthophylls/administration & dosage , Autophagy/drug effects , Rats , Testis/drug effects , Testis/pathology , Testis/metabolism , Oxidative Stress/drug effects , Antioxidants/pharmacology , Antioxidants/administration & dosage , Apoptosis/drug effects , Malondialdehyde/metabolism , Random Allocation , Reperfusion Injury/prevention & control , Superoxide Dismutase/metabolism , Glutathione/metabolism
18.
J Physiol Pharmacol ; 75(2): 145-157, 2024 Apr.
Article En | MEDLINE | ID: mdl-38736262

Stroke is the second leading cause of death worldwide. Understanding of gene expression dynamics could bring new approaches in diagnostics and therapy of stroke. Small noncoding molecules termed 'microRNA' represent the most flexible network of gene expression regulators. To screen out miRNAs that are mainly regulated during reperfusion in mechanically embolized patients, and study their mechanisms of action in reperfusion injury after thrombectomy, in order to find new therapeutic targets for mechanically embolized patients. Serums from 30 patients with moderate to severe stroke after mechanical thrombectomy (MT) were collected to measure miRNA expressions. Clinical information of patients was analyze, and patients were divided into poor prognosis and good prognosis. Factors affecting prognosis was classified, and independent risk factors for poor prognosis were determined. Prognostic value of National Institutes of Health Stroke Scale (NIHSS) score on admission to patients with MT was assessed. ROC (receiver operating characteristic) curves were drawn, and Kaplan-Merier method determined whether different NIHSS scores at admission had any difference in the in-hospital survival rate of consistency index/random consistency index (CI/RI) patients treated with MT. An oxygen-glucose deprivation/reperfusion (OGD/R) cell model and an middle cerebral artery occlusion (MCAO)/reperfusion mouse model were established, in which miR-298 expression was tested. In OGD/R cells, proliferation, apoptosis, and autophagy were assessed after intervention with miR-298 and/or autophagy related gene 5 (ATG5). In MCAO mice, the infarct area was calculated, and neurological function was assessed. The relationship between miR-298 and ATG5 was explored and validated. Age, diabetes, hypertension, hemorrhage transformation, NIHSS score at admission, leukocyte, neutrophil count and neutrophil to lymphocyte ratio (NLR) level were associated with patient's prognosis. Diabetes, NIHSS score at admission, and hemorrhagic transformation were independent risk factors for predicting poor prognosis in patients treated with MT. NIHSS score on admission had a predictive value on patient's prognosis. miR-298 was upregulated in acute cerebral ischemia patients with MT (p<0.05), especially in those with poor prognosis. miR-298 was elevated in both cell and mouse models (p<0.05). Apoptosis and autophagy of cells were weakened after miR-298 knockdown, and infarction in the mouse brain tissues was reduced. ATG5 was a target of miR-298. Overexpressing ATG5 rescued miR-298-induced apoptosis and autophagy. In conclusion: regulation of miR-298 and ATG5 attenuates neuronal apoptosis and autophagy, providing a new strategy for brain injury after reperfusion in patients with MT.


Apoptosis , MicroRNAs , Reperfusion Injury , Thrombectomy , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Humans , Male , Aged , Female , Middle Aged , Thrombectomy/methods , Reperfusion Injury/metabolism , Mice , Infarction, Middle Cerebral Artery/surgery , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , Autophagy/physiology , Prognosis , Stroke
19.
Ulus Travma Acil Cerrahi Derg ; 30(5): 309-315, 2024 May.
Article En | MEDLINE | ID: mdl-38738674

BACKGROUND: This study aimed to evaluate the histopathological and biochemical effects of ketamine on penile tissues following ischemia-reperfusion injury induced by priapism. METHODS: Twenty-four male rats were randomized into three groups. Group 1 served as the control group. Group 2 underwent the priapism model to induce ischemia-reperfusion injury. Group 3, the treatment group, experienced a similar ischemia-reperfusion model as Group 2; additionally, 50 mg/kg of ketamine was administered intraperitoneally just before reperfusion. Blood biochemical analyses and penile histopathological evaluations were performed. RESULTS: In Group 3, significant improvements were observed in all histopathological scores, including desquamation, edema, inflammation, and vasocongestion compared to Group 2 (p<0.001). Blood biochemical analyses showed that the malondialdehyde (MDA) levels were recorded as 10 in Group 2, with a significant decrease in Group 3 (p=0.013). Similarly, proinflammatory cytokine levels, including interleukin-1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α), were found to be suppressed in Group 3 compared to Group 2 (p=0.003, p=0.022, and p=0.028, respectively). Antioxidant enzyme activities, such as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD), were higher in Group 3 compared to Group 2 (p=0.016 and p=0.024, respec-tively). CONCLUSION: Ketamine is an effective anesthetic agent in alleviating the effects of penile ischemia-reperfusion injury.


Disease Models, Animal , Ketamine , Malondialdehyde , Penis , Priapism , Reperfusion Injury , Animals , Ketamine/administration & dosage , Ketamine/pharmacology , Ketamine/therapeutic use , Male , Priapism/drug therapy , Priapism/etiology , Rats , Penis/drug effects , Penis/blood supply , Penis/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Malondialdehyde/metabolism , Tumor Necrosis Factor-alpha/blood , Tumor Necrosis Factor-alpha/metabolism , Random Allocation , Anesthetics, Dissociative/administration & dosage , Interleukin-1beta/metabolism , Interleukin-1beta/blood
20.
J Transl Med ; 22(1): 447, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741132

BACKGROUND: Retinal ischemia/reperfusion (RIR) is implicated in various forms of optic neuropathies, yet effective treatments are lacking. RIR leads to the death of retinal ganglion cells (RGCs) and subsequent vision loss, posing detrimental effects on both physical and mental health. Apigenin (API), derived from a wide range of sources, has been reported to exert protective effects against ischemia/reperfusion injuries in various organs, such as the brain, kidney, myocardium, and liver. In this study, we investigated the protective effect of API and its underlying mechanisms on RGC degeneration induced by retinal ischemia/reperfusion (RIR). METHODS: An in vivo model was induced by anterior chamber perfusion following intravitreal injection of API one day prior to the procedure. Meanwhile, an in vitro model was established through 1% oxygen and glucose deprivation. The neuroprotective effects of API were evaluated using H&E staining, spectral-domain optical coherence tomography (SD-OCT), Fluoro-Gold retrograde labeling, and Photopic negative response (PhNR). Furthermore, transmission electron microscopy (TEM) was employed to observe mitochondrial crista morphology and integrity. To elucidate the underlying mechanisms of API, the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, flow cytometry assay, western blot, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, JC-1 kit assay, dichlorofluorescein-diacetate (DCFH-DA) assay, as well as TMRE and Mito-tracker staining were conducted. RESULTS: API treatment protected retinal inner plexiform layer (IPL) and ganglion cell complex (GCC), and improved the function of retinal ganglion cells (RGCs). Additionally, API reduced RGC apoptosis and decreased lactate dehydrogenase (LDH) release by upregulating Bcl-2 and Bcl-xL expression, while downregulating Bax and cleaved caspase-3 expression. Furthermore, API increased mitochondrial membrane potential (MMP) and decreased extracellular reactive oxygen species (ROS) production. These effects were achieved by enhancing mitochondrial function, restoring mitochondrial cristae morphology and integrity, and regulating the expression of OPA1, MFN2, and DRP1, thereby regulating mitochondrial dynamics involving fusion and fission. CONCLUSION: API protects RGCs against RIR injury by modulating mitochondrial dynamics, promoting mitochondrial fusion and fission.


Apigenin , Mitochondrial Dynamics , Neuroprotective Agents , Reperfusion Injury , Retinal Ganglion Cells , Retinal Ganglion Cells/drug effects , Retinal Ganglion Cells/pathology , Retinal Ganglion Cells/metabolism , Apigenin/pharmacology , Apigenin/therapeutic use , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Mitochondrial Dynamics/drug effects , Male , Apoptosis/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Models, Biological , Mice, Inbred C57BL
...